Towards Closing the Energy Gap Between HOG and CNN Features for Embedded Vision

نویسندگان

  • Amr Suleiman
  • Yu-Hsin Chen
  • Joel Emer
  • Vivienne Sze
چکیده

Computer vision enables a wide range of applications in robotics/drones, self-driving cars, smart Internet of Things, and portable/wearable electronics. For many of these applications, local embedded processing is preferred due to privacy and/or latency concerns. Accordingly, energy-efficient embedded vision hardware delivering real-time and robust performance is crucial. While deep learning is gaining popularity in several computer vision algorithms, a significant energy consumption difference exists compared to traditional hand-crafted approaches. In this paper, we provide an in-depth analysis of the computation, energy and accuracy trade-offs between learned features such as deep Convolutional Neural Networks (CNN) and hand-crafted features such as Histogram of Oriented Gradients (HOG). This analysis is supported by measurements from two chips that implement these algorithms. Our goal is to understand the source of the energy discrepancy between the two approaches and to provide insight about the potential areas where CNNs can be improved and eventually approach the energy-efficiency of HOG while maintaining its outstanding performance accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اندازه‎گیری کارایی انرژی با استفاده از روش تحلیل پوششی داده‎ها با خروجی‎های نامطلوب

Iran’s vision statement 1404, maintains that the nation needs to uphold its productivity and innovative spirit in order to enhance the economy’s competitiveness. Having considered the implications of the vision statement 1404 for the country’s sustainable development, in this paper, an attempt is made to measure Iran’s energy efficiency compared to the neighboring countries and some other natio...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Analyzing the Performance of Multilayer Neural Networks for Object Recognition

In the last two years, convolutional neural networks (CNNs) have achieved an impressive suite of results on standard recognition datasets and tasks. CNN-based features seem poised to quickly replace engineered representations, such as SIFT and HOG. However, compared to SIFT and HOG, we understand much less about the nature of the features learned by large CNNs. In this paper, we experimentally ...

متن کامل

Deformable Part Models with CNN Features

In this work we report on progress in integrating deep convolutional features with Deformable Part Models (DPMs). We substitute the Histogram-of-Gradient features of DPMs with Convolutional Neural Network (CNN) features, obtained from the top-most, fifth, convolutional layer of Krizhevsky’s network [8]. We demonstrate that we thereby obtain a substantial boost in performance (+14.5 mAP) when co...

متن کامل

Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017